Biodistribution, pharmacokinetics, and toxicity of dendrimer-coated iron oxide nanoparticles in BALB/c mice

نویسندگان

  • Marzieh Salimi
  • Saeed Sarkar
  • Samaneh Fathi
  • Ali Mohammad Alizadeh
  • Reza Saber
  • Fatemeh Moradi
  • Hamid Delavari
چکیده

Background The possibility of using a specific nanoparticle in nanomedicine highly depends on its biodistribution profile and biocompatibility. Due to growing demand for iron oxide nanoparticles (IONPs) and dendrimers in biomedical applications, this study was performed to assess the biodistribution, pharmacokinetics, and toxicity of dendrimer-coated iron oxide nanoparticles (G4@IONPs). Materials and methods IONPs were synthesized via co-precipitation and coated with the fourth generation (G4) of polyamidoamine (PAMAM) dendrimer. To determine the biodistribution, 5 mg/mL G4@IONPs suspension was intraperitoneally injected into tumor-bearing BALB/c mice, and iron levels in blood and various organs, including the lung, liver, brain, heart, tumor, and kidney, were measured by inductively coupled plasma mass spectrometry (ICP-MS) at 4, 8, 12, and 24 h after injection. Also, to investigate the toxicity of G4@IONPs, different concentrations of G4@IONPs were injected into BALB/c mice, and blood, renal, and hepatic factors were measured. Furthermore, histopathological staining was performed to investigate the effect of G4@IONPs on the liver and kidney tissues. Results The results showed that the iron content was higher in the kidney, liver, and lung tissues 24 h after injection. Toxicity assessments revealed a significant increase in blood urea nitrogen (BUN) and direct bilirubin at the concentration of 10 mg/kg. Also, in this concentration, histopathological abnormalities were detected in liver tissue. Conclusion Although more systematic studies are still required, our results encouraged the future investigations of G4@IONPs in biomedical applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of magnetic fluid hyperthermia with dendrimer coated iron oxide nanoparticles on breast cancer in BALB/c mice

Introduction: Magnetic fluid hyperthermia (MFH) is a promising therapeutic method in cancer therapy with using magnetic nanoparticles (NPs). In this study, we assessed the effect of MFH on mechanisms of cell death in murine breast cancer cell line (MC4-L2) and also the treatment of breast tumor in BALB/C mice using four generation dendrimer coated iron oxide nanoparticles (G4@I...

متن کامل

Magnetic hyperthermia and MRI relaxometry with dendrimer coated iron oxide nanoparticles

Introduction: Recently, some studies have focused on dendrimer nanopolymers as an MRI contrast agent or a vehicle for gene and drug delivery. Considering the suitable properties of these materials, they are appropriate candidates for coating iron oxide nanoparticles which are applied to magnetic hyperthermia. To the best of our knowledge, the novelty of this study is the inves...

متن کامل

The Effect of Magnetic Iron Oxide Nanoparticles on Mice Liver and Kidney

Background & Aims: In spite of frequent produce and use of magnetic nanoparticles in biological fields, there are few studies on their side effects, especially under in-vivo conditions. Method: In this research, the effect of the single-dose intraperitoneal injection of DMSA (dimercaptosuccinic acid) coated magnetic iron oxide nanoparticles (Fe3O4) in different doses (50, 100, 200 and 300 mg/kg...

متن کامل

The acute toxicity of urea coated ferrous oxide nanoparticles on L929 cell line, evaluation of biochemical and pathological parameters in rat kidney and liver

Introduction: Iron plays an important role in physiological processes as a trace element. Today, iron oxide nanoparticles have attracted extensive attention due to their super paramagnetic properties and a variety of potential applications in many fields. The main objective of this study was to evaluate in vitro and in vivo toxic effects of the iron oxide nanoparticles on L929 cell line, kid...

متن کامل

Long term biotransformation and toxicity of dimercaptosuccinic acid-coated magnetic nanoparticles support their use in biomedical applications.

Although iron oxide magnetic nanoparticles (MNP) have been proposed for numerous biomedical applications, little is known about their biotransformation and long-term toxicity in the body. Dimercaptosuccinic acid (DMSA)-coated magnetic nanoparticles have been proven efficient for in vivo drug delivery, but these results must nonetheless be sustained by comprehensive studies of long-term distribu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2018